MR Image Segmentation based on Local Information Entropy

نویسندگان

  • Jianwei Zhang
  • Xiang Ma
  • Yunjie Chen
  • Lin Fang
  • Jin Wang
چکیده

In this paper, an improved Geometric Active Contour model is presented. This model introduced a window function to research the mean information of each pixel’s neighbor region, and constructed a novel signed pressure force function based on the entropy to drive the contour towers the boundary. In order to improve the efficiency and stability of the algorithm, this paper adopts two valued level set method to realize the segmentation process. The experimental results show that this method can obtain satisfied result even when the images have intensity inhomogeneity and weak edges.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Feature Extraction and Information Bottleneck-Based Segmentation of Brain Magnetic Resonance (MR) Images

Automated tissue segmentation of brain magnetic resonance (MR) images has attracted extensive research attention. Many segmentation algorithms have been proposed for this issue. However, due to the existence of noise and intensity inhomogeneity in brain MR images, the accuracy of the segmentation results is usually unsatisfactory. In this paper, a high-accuracy brain MR image segmentation algor...

متن کامل

Plant Classification in Images of Natural Scenes Using Segmentations Fusion

This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...

متن کامل

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction

Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...

متن کامل

MR Brain Image Segmentation: A Framework to Compare Different Clustering Techniques

In Magnetic Resonance (MR) brain image analysis, segmentation is commonly used for detecting, measuring and analyzing the main anatomical structures of the brain and eventually identifying pathological regions. Brain image segmentation is of fundamental importance since it helps clinicians and researchers to concentrate on specific regions of the brain in order to analyze them. However, segment...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014